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ABSTRACT

Let X(l),...,X(n) be pxl random vectors with mean zero.

In
Put S - 1 I X(t)X(t) . When X(t),(t-l,...,n) are distributed as i.i.d.

ntl 
- ~

N(OZ), (i.e., usual multivariate analysis), many authors have investigated

the asymptotic expansions for the distributions of various functions of the

eigen values of S. In this paper we will extend the above results to the

case when {X(t)} is a Gaussian stationary process. Also we shall derive

the asymptotic expansions for certain functions of the sample canonical

correlations in multivariate time series. Applications of some of the

results in signal processing are also discussed.



1. INTRODUCTION

Recently several authors have introduced some multivariate methods to

multivariate time series analysis. Using the orthogonality and asymptotic

normality of the "Fourier components" of time series, Priestley, Rao and

Tong (1973), Brillinger (1975) and Krishnaiah (1976) discussed the princi-

pal component analysis in the frequency domain, and investigated some asympto-

tic properties of sample principal component roots and test statistics.

Similarly Hannan (1970), Brillinger (1975) and Krishnaiah (1976) discussed

the canonical correlation analysis in the frequency domain, and Brillinger

gave the limiting distributions of estimates of canonical correlation co-

efficients. Also Robinson (1973) gave an approach of canonical correlation

analysis for the covariance matrix of multivariate time series.

In this paper we shall discuss~the asymptotic distributions of eigen-

values of sample covariance matrices of multivariate time series since the

elgenvalues play a fundamental role in multivariate problems. In Section2,_,,

we shall give the limiting distribution of eigenvalues of sample covariance

matrices for non-Gaussian linear vector processes. Furthermore, in Section 3,•

--we shall derive tthe asymptotic expansions of certain functions of eigenvalues

of covariance matrix for multivariate Gaussian stationary processes, and

discuss their applications for time series principal component analysis.

In Section 4-we-s-all give the asymptotic expansions of certain func-

tiors of canonical correlation matrix for multivariate Gaussian stationary

processes, and discuss-some asymptotic properties of a test statistic for

"canonical correlations.
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2. CENTRAL LIMIT THEOREM FOR EIGENVALUES OF COVARIANCE MATRICES

In this section we give the central limit theorem for eigenvalues of

sample covariance matrices. In the sequel, the set of all integers is denoted

by J and the Kronecker's delta is denoted by 6(m,n).

Let {X(t) : teJ} be a vector-valued linear process generated as

X(t) = I G(J) e(t-J), t E J,

where the X(t)'s have p components and the e(n)'s are q-vectors such that

E{e(n)} = 0 and E{e(m),e(n)'} - 6(m,n)K, with K a nonsingular qxq matrix;

the G(j)'s are pxq matrices; and the components of X, e and G are all real.

If • trG(j)KG(j)' < - (this condition is assumed throughout in this section),

j=0

the process {X(t)} is a second-order stationary process and has a spectral

density matrix 6(w) which is representable as

S(w) -L k(w) K k(w)*, -ir < w < iT,
21r

where

k(w) c , G(j) eiw.
j-O

Suppose that observed stretch {X(1),...,X(n)} of {X(t)} is available. Define

n
C(O) I n • X(t)X(t)', and denote the (c,a) components of C(O), 6(w), k(w)

nti

and K by C(OO), aj (w), k 8(w) and K a, and denote the cth component of

...........................
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X(t) and o(t) by X (t) and e (t), respectively. Assuming that {e(t)} is

fourth-order stationary, let Qe . (tl,t 2 ,t 3 ) be the joint fourth cumulant

of e a(t), e 2(t+t 1 ), e a(t+t 2 ), e 4(t+t 3 ) and assume that

SQe (tit I < w, (0 < a **.,a <q);
t ,t~t3a a4 2,t3) 1, , . ,4

then the process {e(t)} has the fourth-order spectral density Q e .a4(Wl,W2,W3)

such that

w

1' 1W exp{- 1192+wt W
ci" ci4  ,w2,w3) (21T) 3 t 2I 1 1 2 2+3t3

x Qee (tlt2t

x _xSimilarly we can define QXal.. 4 (t 1 ,t 2 ,t 3 ) and Ql. "a4 (wlw 2 ,W3 ), respectively,

the fourth-order cumulant and spectral density of the process {X(t)},

1 <_ c 1 ,...,ca4 <p. Denote by 8(t) the a-field generated by {e(n); n<t}.

We set down the following assumptions.

Assumption 1. For each 81,82 and s

Var[E{e 8 (t)e02 (t+s)IB(t-T)} - 6(s,O)K 12]

= O(-2-c), > 0,

uniformly in t.

J .

do
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Assumption 2.

EIE{e~1 (t ) e (2 ) e (3 ) a4 (t4) a(ti-•)}

- E{e I (tl)e 2(t 2 )e 3(t 3 )e 4(t4)} ) = 0(T-l-n)S

uniformly in tl, where t < t 2 < t 3 < t4 and n > 0.

Assumption 3.

The spectral densities f 8 s(w) (8 l,...,p) are square-integrable.

"* Assumption 4.

* IQ~l..ct (,t 2 ,t 3 )J < •.
tI ,t 2,t 3= •co 1 4

Now define 1(0) = E{C(0)}, and denote the (a,$) component of r(0) by

r(a,8). The following lemma is due to Hosoya and Taniguchi (1982).

Lemma 1.

Under Assumptions 1-4,

S ,2)- r(all, 2 )}, (aic 2

have a joint asymptotic normal distribution whose mean is zero and the asymptotic

covariance between /n {C(Ia2,ci 2 ) -2 and rn {C(a 3, 4 ) -4 r( 3 ,P4a}

is given as

i ... . . .. . . .. . . . . ................ .. I..
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21( (w) + 4 (w)a (w)} dw2J•{alc3 ()a4 l4 a 2 a 3

+ 27rZ..B= -rp kal (wl ka2(-wl ka3(w2)ka4(-w 2)

aleeý '1-T 21~ a 2  a3 3  44

x Q. (w,2-w 2 )dwldw2 . D

Let ,> "" >Z p be the eigenvalues of C(O). Then we can express

C(O) = BLB', where L = diag (kl,.O.,,p ), B isthe orthogonal matrix. Suppose

that the eigenvalues of r(o) satisfy X1 > "'" > X, and that r(O) = YAT'

where X - diag(Xl,...,Xp) and T = (f1l,...,p).is the orthogonal matrix.

We assume that X1,...,9X have the following spectral representations

5j 6(w)dw. (j =l.,p,(2.1)

-7r*

2 i9.w
4. where •..(w) = 2 Ik. ((w),, and kj~w; = ( G1 j(Z)e with • IG..(9)!2

2rZ=O ii =0

Let T = T'C(0)Y, and put U = Vn(T-A). Then, denoting the (i.j) component

of U by uij, from Lemna 1, {u ij} have a joint asymptotic normal distribution

whose mean is zero and the asymptotic covariance between u and u• is given

as

ii(ij,kZ) = 27r {gik(w)gj(w) + giz(w)gjk(w) I dw

-iT

+k2 (Wl)k k kQ '-w2 w

dw dw2 , (2.2)
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where gij(w) - fii(w)6(i.j)o Then we get the following theorem.

Theorem 1. Under Assumptions 1-4, the joint distribution of D = Vn(L-A)

and G = rn(B-') tends to that of D diag(uo..,u pp) and G = ýW, where

S{wi }, with O i 0 i 0 j and { } is distributed as
W }w ih i 0 ij X j_i ,ij

a multivariate normal distribution whose mean is zero vector and the covariance

between tiij and kZ is given as p(ij,kt) defined in (2.2). In particular

if the process is Gaussian, then the limiting distribution of D and G =

( ' h is normal with D and G independent and the diagonal elements

of D are independent. The diagonal element di of D has the limiting distri-

bution

N(0, 47r gii(w) 2dw).
-iT

The covariance matrix of the ith eigenvector is

Var{hi} 27 k(wgkk(Wdw. B'Sk=l 0 i-X k)2 - giiwgk k

k#i

and the covariance matrix of h and h in the limiting distribution is

2w (i

Cov{hishj} = (_ 2 - gii(w)g g(w)dw'6 J.

[Proof] Let T = YLY', where Y is orthogonal. Put W = rn(Y-1) = ýwij}.

Using the same arguments as Anderson (1984, p. 541), and substituting

T = A +- LU, Y = I + L W and L = A +-L D to the equations T = YLY' and
rn /n_
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1 YY, we get di = uii, (i ` l,...,p), w = 0, w - ij i i -
ii, ~ ~ ~ i I j

1,...,po Noting Cn (B-i) = 'W and Lemma 1, we get the des 4 ced results. 0

Remark. For non-Gaussian case, the distribution of D and G are not always

asymptotically independent.

Now we confine ourselves to the case when {X(t)} is Gaussian and consider

the asymptotic distribution of the q smallest roots of C(O) when the q smallest

population roots are equal. Let

A 0>

q,!

* where the diagonal elements of the diagonal matrix A are different and larger

than e (>0). We assume that the eigenvalues Xp..Xp (X 1 > "" >

X p-q+l - " ° X p = e) have the following spectral representations given

in (2.1);

X= 5 6(w)dw, (2.3)

with = ... -M - (i.e., uniform spectra).

As a criterion to test the null hypothesis

H:X1 >X . > Xp-q > p- .- "=X1 p = 0, (2.4)

where . (j = l,...,p) have the spectral representations (2.3), we use the
J

following criterion
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p

L - -n log ip-Vq+1 xi (2.5)
1- I, tI ) q

q. i-p-q+1

In the usual multivariate analysis this is known as the likelihood ratio

criterion. Using the similar arguments in Anderson (1984, p. 475-6), we

. can see

p

L=L 2 + ' 2

i0(<j i=p-q+1
•. p-q+l<i

p
1 1 uii)21] + higher order terms. (2.6)
q i-p-q+l

Since we assumed (2.3), we can see that

uii(i - p-q+l,...,p) and u (i # J, i-j - p-q+1,...,p)

are asymptotically distributed as i.i.d. N(0,2 2) and i.i.d. N(0,02), respectively.

By (2.6) we have,

Theorem 2. Under the null hypothesis H, the limiting distribution of the

test statistic L tends to the x 2-distribution with ½(q+2)(q-1) degrees of

freedom.

SM, •. lit'a•iwli-....ltw w~#,a......................................•...."-................... • -
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3. ASYMPTOTIC EXPANSIONS OF CERTAIN

FUNCTIONS OF EIGENVALUES OF COVARIANCE MATRIX

In this section we derive the asymptotic expansions of certain func-

tions of eigenvalues of covariance matrix in multivariate time series.

Here we assume that {X(t) = (Xl(t),...,X (t))':teJl is a pxl-vector-valued

Gaussian stationary process with zero mean and covariance matrices

* r(j) = E{X(t)X(t+j)'}.

* Assumption 5. The covariance matrices satisfy

weeUl 1r(u) II < (3.1)

Then the spectral density matrix of {X(t)} is given by

j(w) ue-U.
U= --Co

n

* Let 1 > ... > Z be the eigenvalues of the matrix C(O) = n [ X(t)X(t)-p n t-

". and let X_ ... _ be the eigenvalues of r(o) such that
p

X = ... = X =0 ((3.2)ql+ ... +qa 1 +1 + +q

for a - 1,2,...,r, ql+...+qr p, and qo 0. Also, let T.( 1 ,..., ),

(j = l,...,k), be an analytic function of .. , * about . ..... X

In addition, let

aja = zl .
a - p

Ja kg

92 T 2= X,

."~..-..........."..-....-..-..- -.... ".. "-... ...... .. ".-"".•-....-.".....-....... . ..... ...- * ... ,. . . - .:
a:r p
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a3 T
g

a jaey- az P z 9 aý I

for geJa hcJ 8, tCj , '- (X,...,X and R' where J
) a £' p e

denotes the set of integers ql+...+qa_+l, ... , ql+...+q for a w 1,2,...,r.

In this section we are interested in obtaining the asymptotic joint distri-

bution of

fn-{Tj9., p) k T. (Xl,..p }x (j = 1,...,k).

Expanding T.( .,..., £) as Taylor series, we obtain

r
T Z., X "T (Xl ,...,Xp) + el aje g a

geJ

2-i 8=1 gcJg h9Jaa a
r r r

a1 8- aja8y gEJ hJ te ( a-e) Lh-8)( it-eY)

+ higher order terms.

Now, let L i nV{Tj( ,., - T .(.,..., Ap)} for j = 12..k

Then
aa t- r raL l aa= -i 8- 1 aB

x tr (W -@el) tr (W -e 1)

aa8

I"r r r

+ an l yl tr(WI-IeIZtr(Wk-e8  tr(W -e )

+ higher order terms,

where Wa is a random matrix with eigenvalues 2'g, geJe, and I is an identity

*" matrix. If we assume that W is of the form;

w .-. let LV..-".. .. ...- .. ..- -. ".-- .... , - f1-.." j -,,...,-.
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w - 8 1 + -i w(1) + Iw (2) +..,
L OL /- a 1n a

then L is of the following form

r (1) 1r t (2 )
aja trW + aj trLj •=i a 7n- al -

+ r rr W (1) tr i()2 r aja$ tr traW

a~l a=l

+ higher order terms.

The following lemma is due to Fujikoshi (1977).

Lemma 2. Let T be a square random matrix and dl> ... > dp be the eigenvalues of

T. Also, let A1 > ... > P be the corresponding population eigenvalue such that

A1 = ... = Aq, = @1'

q 1 = ql+q2  2

A = ... = A = e
ql+.. .+q r- p r

In addition, we assume that T can be expressed as

T = A + eUM+(1) 2 U(2) +

*' where A = diag(Al,...,Ap) and E > 0 is very small. Then the eigenvalues d.

(jeJ are the eigenvalues of

Z = 81I + EZ() + C2z( 2 ) +...,

where

Z = U(I), = U(2) + •. (6 8 )-Iu(1)U1)a OM OL CM OOC O.- a$ ý

In
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U(i) u(i)
21 22  .. r

~~1 /1
u ki) u(i) .. u(i)
rl r2 "" rr/

u~ui) j

and U W is of order q xq.
aa CL

Applying this lemma to our normalized covariance matrix U defined in the

previous section we have

r 1 -1
Lj = aj.trU, •-{VajtrV(8 U +U

aJ LM Roa~ ~ a~. il a1l 84

r r

" + • • aj., trU atrU } + higher order terms. (33)
a.=1 331

Here we also assume that the eigenvalues have the spectral representations in

(2.1). Applying Lemma I for Gaussian case it is not difficult to show that

r

E(L.i) = I { X i a.j (8 L- 6
( Vn a=l#a iPJL kcJ a

• T

r

. a. 4 1t f (w)2dw} + 0(n-)

a

; c./Nn + 0(n i) (say). (3.4)

Sr r

cum{L.,L}= cum(~~ ajoUkk' ama k'l
a=1 keJ L=l k'J- m1 U1k

a a

-, - -
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+ 0(n- )

= i ajaMC4nf - kk W) 2dw + 0(n-)

= c. + 0(n'), (say). (3.5)jm

Now define
n

Z n(ij) n t {Xi(t)Xj(t) -(i,j},Zn~ij) Vn- t=l

and

XMi) = (Xi(1),...,Zi(n))'.

Then we can express as

M Y(i) i

where L. is the covariance matrix of X(), and Y(i) is a random vector dis-

tributed as N(0n n). Using the fundamental properties of cumculants (see

Brillinger (1975)) we have

cum{Znc(il jl) Zn (i2,j2), zn (i 3,j3)

= --cum{ Yj , Y
nV/n 1 Ji 2" i2JY

(i 3 ) Y Z (j 3 )

Y3 J 3 "

nVn i '2l '3z '4z'5 6
(3.6)

= L * r (nxn)r F3(nxn)r (nxn),

nfn f I2 34 56

where Z is the sum over all two dimensional indecomposable partitions of

i2,'2 and r (nxn) = . To evaluate (3.6), after a slight

3j3/
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modification of Theorem 1 in Taniguchi (1983) we get the following lemma.

Lemma 3. Let X(t) = (X1 (t),...,X p(t))' be a Gaussian stationary process which

satisfies Assumption 5, with the spectral density matrix d(w) = {6 ij(w)} and

mean zero. Then

1 tr ri (nxn) ri . (nxn) ... r (nxn)
n i 2 s

= (27) s-I 1fril l(w)6 i.2(W)...' i(W)dw + 0(n-l). (3.7)

Using this lemma for (3.6) and noting fundamental properties of cumulants

it is not difficult to show

2rrcUm{L jL mL } - a.0,a ma a a 6kM dw

a -wr
8w2  r n.t 2_ r 2

+ 2% Je. 8k7k (w) dw( r k2 k2 (w)
LL . / k-hk dwvnn aa-l k cJ - 1 -IT

x {aj aMsas +a a maasas +a a asamaa + aja assam~

+ aa a +a a a + 0(n-3/2)sumsajaB s~amBaj Bc}t

Cjms +O(n ), (say). (3.8)
rn

Therefore we get the following asymptotic expansion (see Taniguchi (1986)).

"Theorem 3. Under Assumption 5, we have

SP(Ll1 < yl,...,Lk < yk)

Yl Ykk... j N(y:9) [l + H CjH(Y)

S-® - - --

k C -
CJms H (y)Idy + O(n) 

(3.9)
j,m,s-l 6Vnn jms ~ ~

* - -* .. . .
I~~~- . *

,.',X<.., • :,.• •: - *iJ "i -'.-"" / -"""'"' " . -- "-".-. .:-• -.- "- -- " "--'-.,-.',: -X , , ,".:,',. -- ,"
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'w~herey Y " (YIk'''Y N(y:P)) - ( 2 r)-k/2i i-1/2 x exp(- y''Q-ly),

(_l)S •sH(Y) - N(y N(y:S),

i .j.. "is ~ - 0 Y I '''•Yjs

and Q = {c jm}, (kxk-matrix).

Corollary 3.1. Suppose that the eigenvalues of r(O) satisfy X1 > X. > 0

and Tj (X•'... I ) = X.. In the special case when the spectral densities are

* constants such that

(i.e., the usual multivariate analysis case), the expansion (3.9) becomes

P{ •n-( Z-Xl) < Yl,''''rn( kp-X ) < yp

l p Y

N~y: [1+ Z -I-Hj (y)
~ ~j=l v -

-m00 -- l

+ "" -H (y)]dy + 0(n-), (3.10)
j, m,s=l 6Vnn Js

where

cj (

and the (j,m) element of 0 is

cjm 26(j,m)A ,

and

Cjms = 8ij (Q'm)6(m's),

which coincides with the result of Sugiura (1976).

For testing H : Ap-q p-q+l X" ... A = - (> 0) against

A : -> "'" > X > 0, we consider the criterion L defined in (2.5).
p-q+l- - p

Then we get the asymptotic expansion of L under the nonnull hypothesis.

I
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Corollary 3.2. Let T( ,..., L in Theorem 3 and m p-q.
Sm+l p n

Then, under the alternative A, we have

P[nT(k ,. k T- r(+l Ox,.. .,)} < y1]

Y1SCl ClIi

N(yl:R) [1 +- cl(yI) +c-i (yl)]dyI + O(n-),

where c 1 , SI and cll are defined in (3.4), (3.5) and (3.8), respectively,

with
p

i=m+lal =a p

a~ Z x i
i=m+l

icc p-mrn ~l..p
a laa 2 p

a I XA) 2

iim+l

and

las p .#B, c,8=m+l,...,p.

( [ ) 2

i-m+l

,,,•_-,~~~~~.-,., .,...-.,•-.,,. ...... ,....,..._....... ,.......-...,..... . .................-.. ,...-.



4. ASYMPTOTIC EXPANSIONS OF CERTAIN FUNCTIONS OF CANONICAL CORRELATIONS

In this section we derive the asymptotic expansions of certain functions

of sample canonical correlations in multivariate time series. Let X(t)'

(X1(t)', X2 (t)') - (X(t)....,X (t)vXp+l (t),oo**Xp.. q(t)). (pfq), be a (p+q)-

-' vector-valued Gaussian stationary process with zero mean and covariance matrices

r(j) - E[X(t)X(t+j)'}, which satisfy Assumption 5. Also we assume that

{X(t)} has the spectral density matrix J(w) - {6 (w)). Put

C (0) 1 X X(t) X(t)'-( 1  2

tom- 21 \2 •22

r(o) -E{C(O)) -! 1 1  M12

/n= {c(o)-r(o)} 1 2

\Y21 Y 22)

"Define the pxq matrix G as

11 12 H 2

. By the singular value decomposition theorem, there exist two orthogonal matrices

rI and r2 of order pxp and qxq, respectively, such that

G = r Pr'

where P - {diag(P 1,...,P )1O}, PP' - diag(X 1,...Ap), and X ", (i -2

Define

" r M

i 2  r2

• . • • . • . .• . + .o . o . . . . . • . .o . . . • :1 - • o . . . o . , .
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Then, using a similar argument to Fang and Krishnaiah (1982), we can see

T, -I s-I i -I ST
(1 S1IS12S22S21•

Spp' + I (PV21 - PV22P' + V12P' - V1 1 PP')

+ (P vP,- Pv V + v v - vvPI
S 22V22' 22V21 12V21 - 12 22

- 11lPV 21 + Vl11lP•22 PI - v 11V12 P' + vl11Vl11PP')

0(n-3/2 ((4.1)
p

where V. 7v Y 7!, (i,j = 1,2).

ij i ijj

Now, without loss of generality we assume that {X(t)} has the covariance

matrix

S1 0 0

r(o) = 0 1 0 •p p (4.2)

I 0 1 0

0 p 0 1
p/

0

0 ) 0 (w) 0

0

S(P) (P) (w) (43)
(w) -{jk(w)} = (w) 0 06211 C") 0(1)

21) 022 (w) 0

0 (P (w) 0 6(q) (w)21 022

0 /

," •" '".' ", ,• " ' ." '.." . A." ..- , " .- ,"- , " "•""' '. '', ,- ''- "."', -" -' ',"' " '."- .'-, ,."'. *.
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with

P j a 62 ()dw 12~ (w)dw, =Tr-
•zJ (j)

S= (J)(w)dw, j - 1,...,p,
-- iT

1 = r(J)(w)dw, j = 1,...,q.• 22

* So we may assume that 7 1 = Ip and 2 = I q. Let Z > ... > Z be the eigen-

-1 -1

values of SI1 S S2 1 and let T.. ), (j = 1,...,k), be an analytic

function with the same notations defined in the previous section. We set

down

L= V{T(i,...,p) - T(A 1 ,...,A)} ; j = (Z...,,

where X,.,X satisfy the relation (3.2). Then, using the same argumentsI,. p

and notations we have

r tW(1) + a W(2)
L aj, tr W. v' a, trJ ý c= C n at=1 •

r r (
+ I a. (trW ()(trw () + higher order terms, (4.4)

a=1 =1 a a

with

w(1) U (1)

w (2) U u(2) + (ea-ea)-YuM8us
a as
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I- where

U Py Y -By P'+Y +'-Y
21 2 22 2 12 2

U Y2 •12 2 2 B -,Y1 P2 y 2 1 + Y1 y22I

-Y Y P + Y y ppt.
11 12 11 11

* Define

U(k,m) = PkY(p+k~m) PO PY(p+k,p+!n)

mm

V(m,k) = PkY(k+p,m+p) - Y(k,m+p),

where Y(a,8) is the (a,$)th component of the matrix Y. Then, by (4.4) we have

r
L.= a { U(k,k)}

a= Ja keJ

aa

r

I I Y(k,m)U(m,k)
i-1 MEJ MEJ

+ ~ e% 1 kJmJU(k,m)U(m,k)]

ae mE
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r r
+a. U(k,k)U(m,m)}
a-= 91 ja keJ m~J

+ higher order terms, (4.5)

where J denotes the set of integers p+1,...,q. We denote
r+1

2*K vv(m,k:m,k) = EfV(m,k)}

K (k,m:m,k) = E(IY(k,m)U(m,k)},

K (k,m:m,k) =E{U(k,m)U(m,k)},

K uv(Z,Z:m,k) =EfU(Z,Z)V(m,k)}.

K (k:m:s) =n vcum{U(k,k),U(m,m),U(s,s)}.
uuu

Then using Lemma 1 for Gaussian case we can see that

K vv(m,k:m,k)

2-r 2~r j ' f1+6(m, k)}14() (,w)6'(m) dw

-
4 k J 2 1 () 2 2 (w 22~nk• 2  w• 2 ()d

-iT

4-T 2r5{ 6 (k) (w)6(m) (w) + S(i,k) 6(k(w)6(dw 0(J1),(.6
-7T

+ ki:ZZ 27 [4(pW)6wY8 (w) + •2m1k ()Id O(w}d4.6
11 22 -12

4 wp~ 2 (w)•~ (w) dw - 4Tp2 Tr() )2dw6(kZ) MI)
z-IT 12 1 9

+ 0(n1) (4.7)



22

K (k, m: m,k)
uu

2Trp 2p 2 \1+6 (m, k)j{ j W (in)j~)w (k) M m(~d

-7r

+ 16(k)6(k)()m)w + {6(k)(w) + 6(m,k)~1 6(k)}W)62 (w)]dw

2i i2 r 16(,kI{ (k) ( in(m() +6M(k) (in)Mk m 1[16i~){1 ()12 (w 22 ()21 ()

+ {6 (M) (w) + 6(mnk)6(in) M})6 (k) (w)]dw

-7 3 (it +(~k1 ( k)n) (Mn) (k)
k2t~)~2 w 21 5(~) 1 1 w1~ wd

-7r

+2r~~()()?~ w)+t(W,) 6 (k) (W (w)d

-21rp 6{ (M (w) + 6 (w~) + 6(xnM)61 (t~(wl

2 Tr (<k)()(n(w +(k )()
+2Trp + ~6(m,k)6( 2 (w)6(mii}d

+2it~ 7rp 6 M W (k)t~ (W){ 1+S(i,k) }d() W)6O)()d

'(Ir

+2r 3 (k)~ (6(m)(w){1+6(m~k)}dw +0J) 48

k m 412 21 '

. .
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0(nI) for all m #k, Z
Ku(m,k:2,. -1

S0(n-I) for all m= k# 2,

K (Z,Z:m,k) 10i 0 2  (2 (2) M2"M(w)dw
2. , 22 () 21 (w)-7r~

-43TrP+ (Z) M (2)
z+ 212 (w). 2 1 (w)}dw

4 p 7(9) (w)2 + j (9w),M (w)}dw

+21 2 (W) l + (6 + (W (w)dw

--iT

"-IT 22 012 (21 12 l1

--1"

+ 0(n- ), for = m =k,

0(n-I), otherwise. (4.9)

Let A be the set of integers k and p+k, and let

"Y j '22 if IJl1-J21 19k

_2p , if Ij ]J2 0,

"k !i 1 - 2

Then, using Lemma 3 we have

K (k:m:s) - (27) 2U y(j j2)y(j3J4).y(Jj6)

l* fIr"

6- V 1 V2 (w) () (w); (w)dw + O(n-),
v -Tr 1 2 v3 4 V 5 V6

for kr mn s,

" 0 , otherwise, (4.10)
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where is the sum of all two dimensional indecomposable partions of ( p4

Thus noting (4.5)-(4.10), it is easy to show that

E(L) 1 c~1 ) + 0(n-3/2) (4.11)

cum{L *,L C C(2) + O(n 1  (4.12)

cum{L ,L SL z L C 3 + 0(n-3 /2), (4.13)

where

(1) r r+1
cal aj, i K v(m,k:m,k)

a= c =1 keJ mciJi

- 1 K YU(k,m:m,k)
1-1 kcJ ameJ 1

+ (0 (-e-) K UK (k,m:m,k))
8~a aB kcJ mcJ u

r
+ ½ a. K (k,k:k,k), (4.14)

a! a kcJ uu
a

C(2) r

j I a ja a,, K u (k,k:k,k), (.5

sal keJ

c jS9, ajaasa a a fK uuu (k:k:k)
a

+ 6K u (k,k:k,k) 2- 6K UY (k,k:k~k)K uu(k,k:k,k))
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+ I {a ja a S a ,aZ a aa }aaJ~r {aj ~+ a.as8aB 8 aj~aasa+ ags asa~B

x I I K (k,k:k,k)Kuu (m,m:m,m). (4.16)
k•J cJB uu U

Therefore we get the following asymptotic expansion (see Taniguchi (1986)).

Theorem 4

P(LI < yl,..oLk < yk)

k C_• H (Y
... ýYk N(y:ý2)[l + H(Y

k 1(3

+ jsi H (y)]dy + O(n-) (4.17)
j,sk=l 6 A n

where

Q = {C(2) (kxk-matrix). 0

Now consider the test of

2 2 2

H k > P k+2 20' = Pp = 0, (4.18)

with

6 (k+l) (w) (p) (w) - 0,
12 12

and

6(k+1) (w) (p) - d(k+l) = ( (q) (w)
11 11 22 "w" "2 2 w 27--,'
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against

2 2 2
A : k+p > 64" -> -- > 0 and pk+1 > 0. (4.19)

For this test problem we use the following statistic

P
Q - -nlog R (1-k.). (4.20)

j-k+1

In the usual multivariate analysis (4.20) is known as the likelihood ratio

statistic for testing H. Then, under H, it is not difficult to show

Q = Y((.,p+j) 2 +higher order terms. (4.21)
Z=k+l j=k+l

Thus we have

Proposition 1. When the null hypothesis H is true, the limiting distribution

as n -- of Q is the x 2-distribution with (p-k)(q-k) degrees of freedom. 0

Using Theorem 4 we can get the asymptotic expansion of Q under the non-

null hypothesis.
1

Proposition 2. Let T (2. ,..,2p) = n Q in Theorem 4. Then, under A, we
1 k+1'* p n

have

PEVW{T (z T..) - P 2 2 < y1
I k+I', 'Zp Tl(Pk+l,...,p)}<y

= I + - H1 (yl) + -l_ Hill(yl)]dyI
-r yn 6 rn

+ 0(n-),

where C(1) Q andwhreC , II ard defined in (4.14), (4.15) and (4.16), with

• • " - . . , ,- , . ", . '•""" . ". ,- . . • . ". ,.-- .. w "' • ,"-' -. '' •.'. " . """""'""""- """ - 'are""" - ." ." -
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aa a1• ="--"',

*~1-

alaa = 2 a2' = k+l,...,p ,
"( -- P

and

aal = 0 a a .

J• P - • , , '€,o "- "- P - "• "- - ","- - " "• . *• '. ". '.P ° , # • • J• . •'
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5 APPLICATIONS IN SIGNAL PROCESSING

Consider the following model in the area of signal processing.

x(t) = As(t) + n(t) (5.1)

where A O [A(4I),...,A($ )], s(t) = (S (t),...,s (t))' n(t) = (nl(t),...,np(0)]

-q qs1 t),

and q< p. Here n(t) is complex Gaussian white noise process with E(n(t)) - 0,

SE(n(t)n--') = a2 1 covariance matrix a 2 1p. Also, si(t) is the wave form associated

with i-th signal. In addition s(t) is assumed dimentional complex Gaussian sta-

tionary to be process with E(s(t)) = 0 and E(s(t)s(t)') = 0. The processes s(t) and

n(t) are independent of each other. Wax and Kailath (1984) and Zhao, Krishnaiah

and Bai (1985) considered the problem of determination of the number of unknown

signals by using information theoretic criteria under certain assumptions. The

* number of signals is equal to the q = p-m where m is the multiplicity of the small-

est eigenvalue of the covariance matrix Z of x(t). We assume that x(t) is a complex
n

stationary Gaussian process and let ns - E x(t.)x(t.)'. Test of hypotheses for

the multiplicity of the smallest eigenvalue of Z are based upon certain functions

of the eigenvalues of S and so the results in this paper are useful in determination

* of the number of signals.

Next, let

y(t) - Bs(t) + n 0 (t) (5.2)

where n 0 (t) is defined as n(t), B:pxq is defined as A and y(t) is the observation

vector on p sensors located at different locations. In this case, let us assume

that (x'(t),y'(t)) is distributed as complex, stationary, Gaussian process. The

results in Section 4 are useful for testing for independence of x(t) and y(t) processes.
-p
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